411 research outputs found

    Half-life of the electron-capture decay of 97Ru: Precision measurement shows no temperature dependence

    Get PDF
    We have measured the half-life of the electron-capture (ec) decay of 97Ru in a metallic environment, both at low temperature (19K), and also at room temperature. We find the half-lives at both temperatures to be the same within 0.1%. This demonstrates that a recent claim that the ec decay half-life for 7Be changes by $0.9% +/- 0.2% under similar circumstances certainly cannot be generalized to other ec decays. Our results for the half-life of 97Ru, 2.8370(14)d at room temperature and 2.8382(14)d at 19K, are consistent with, but much more precise than, previous room-temperature measurements. In addition, we have also measured the half-lives of the beta-emitters 103Ru and 105Rh at both temperatures, and found them also to be unchanged.Comment: 6 pages, 6 figure

    The Impact of Undergraduate Mentorship on Student Satisfaction and Engagement, Teamwork Performance, and Team Dysfunction in a Software Engineering Group Project

    Get PDF
    Mentorship schemes in software engineering education usually involve professional software engineers guiding and advising teams of undergraduate students working collaboratively to develop a software system. With or without mentorship, teams run the risk of experiencing team dysfunction: a situation where lack of engagement, internal conflicts, and/or poor team management lead to different assessment outcomes for individual team members and overall frustration and dissatisfaction within the team. The paper describes a mentorship scheme devised as part of a 33 week software engineering group project course, where the mentors were undergraduate students who had recently completed the course successfully and possessed at least a year’s experience as professional software engineers. We measure and discuss the impact the scheme had on: (1) student satisfaction and engagement, (2) team performance, and (3) team dysfunction

    Dissociative recombination and rotational transitions of D2+_2^+ in collisions with slow electrons

    Get PDF
    Rate coefficients for dissociative recombination and state-to-state rotational transitions of the D2+_{2}^{+} ion induced by collisions with very low-energy electrons have been reported following our previous studies on HD+^{+} and H2+_{2}^{+} [9,10]. The same molecular structure data sets, excitations (Ni+N_{i}^{+} \rightarrow Nf+=Ni++2N_{f}^{+}=N_{i}^{+}+2 for Ni+=0N_{i}^{+}=0 to 1010) and de-excitations (Ni+N_{i}^{+} \rightarrow Nf+=Ni+2N_{f}^{+}=N_{i}^{+}-2, for Ni+=2N_{i}^{+}=2 to 1010) were used for collision energies ranging from 0.010.01 meV to 0.30.3 eV. Isotopic effects for dissociative recombination and rotational transitions of the vibrationally relaxed targets are presented.Comment: 7 pages, 7 figures, 4 table

    Collapse of the N=28 shell closure in 42^{42}Si

    Get PDF
    The energies of the excited states in very neutron-rich 42^{42}Si and 41,43^{41,43}P have been measured using in-beam γ\gamma-ray spectroscopy from the fragmentation of secondary beams of 42,44^{42,44}S at 39 A.MeV. The low 2+^+ energy of 42^{42}Si, 770(19) keV, together with the level schemes of 41,43^{41,43}P provide evidence for the disappearance of the Z=14 and N=28 spherical shell closures, which is ascribed mainly to the action of proton-neutron tensor forces. New shell model calculations indicate that 42^{42}Si is best described as a well deformed oblate rotor.Comment: 4 pages, 3 figures, accepted for publication in Phys. Rev. let

    Evaluation of autoantibody binding to cardiac tissue in multisystem inflammatory syndrome in children and COVID-19 vaccination-induced myocarditis.

    Get PDF
    IMPORTANCE: Cardiac dysfunction and myocarditis have emerged as serious complications of multisystem inflammatory syndrome in children (MIS-C) and vaccines against SARS-CoV-2. Understanding the role of autoantibodies in these conditions is essential for guiding MIS-C management and vaccination strategies in children. OBJECTIVE: To investigate the presence of anticardiac autoantibodies in MIS-C or COVID-19 vaccine-induced myocarditis. DESIGN, SETTING, AND PARTICIPANTS: This diagnostic study included children with acute MIS-C or acute vaccine myocarditis, adults with myocarditis or inflammatory cardiomyopathy, healthy children prior to the COVID-19 pandemic, and healthy COVID-19 vaccinated adults. Participants were recruited into research studies in the US, United Kingdom, and Austria starting January 2021. Immunoglobulin G (IgG), IgM, and IgA anticardiac autoantibodies were identified with immunofluorescence staining of left ventricular myocardial tissue from 2 human donors treated with sera from patients and controls. Secondary antibodies were fluorescein isothiocyanate-conjugated antihuman IgG, IgM, and IgA. Images were taken for detection of specific IgG, IgM, and IgA deposits and measurement of fluorescein isothiocyanate fluorescence intensity. Data were analyzed through March 10, 2023. MAIN OUTCOMES AND MEASURES: IgG, IgM and IgA antibody binding to cardiac tissue. RESULTS: By cohort, there were a total of 10 children with MIS-C (median [IQR] age, 10 [13-14] years; 6 male), 10 with vaccine myocarditis (median age, 15 [14-16] years; 10 male), 8 adults with myocarditis or inflammatory cardiomyopathy (median age, 55 [46-63] years; 6 male), 10 healthy pediatric controls (median age, 8 [13-14] years; 5 male), and 10 healthy vaccinated adults (all older than 21 years, 5 male). No antibody binding above background was observed in human cardiac tissue treated with sera from pediatric patients with MIS-C or vaccine myocarditis. One of the 8 adult patients with myocarditis or cardiomyopathy had positive IgG staining with raised fluorescence intensity (median [IQR] intensity, 11 060 [10 223-11 858] AU). There were no significant differences in median fluorescence intensity in all other patient cohorts compared with controls for IgG (MIS-C, 6033 [5834-6756] AU; vaccine myocarditis, 6392 [5710-6836] AU; adult myocarditis or inflammatory cardiomyopathy, 5688 [5277-5990] AU; healthy pediatric controls, 6235 [5924-6708] AU; healthy vaccinated adults, 7000 [6423-7739] AU), IgM (MIS-C, 3354 [3110-4043] AU; vaccine myocarditis, 3843 [3288-4748] AU; healthy pediatric controls, 3436 [3313-4237] AU; healthy vaccinated adults, 3543 [2997-4607] AU) and IgA (MIS-C, 3559 [2788-4466] AU; vaccine myocarditis, 4389 [2393-4780] AU; healthy pediatric controls, 3436 [2425-4077] AU; healthy vaccinated adults, 4561 [3164-6309] AU). CONCLUSIONS AND RELEVANCE: This etiological diagnostic study found no evidence of antibodies from MIS-C and COVID-19 vaccine myocarditis serum binding cardiac tissue, suggesting that the cardiac pathology in both conditions is unlikely to be driven by direct anticardiac antibody-mediated mechanisms

    Glycan shifting on hepatitis C virus (HCV) E2 glycoprotein is a mechanism for escape from broadly neutralizing antibodies

    Get PDF
    Hepatitis C virus (HCV) infection is a major cause of liver disease and hepatocellular carcinoma. Glycan shielding has been proposed to be a mechanism by which HCV masks broadly neutralizing epitopes on its viral glycoproteins. However, the role of altered glycosylation in HCV resistance to broadly neutralizing antibodies is not fully understood. Here, we have generated potent HCV neutralizing antibodies hu5B3.v3 and MRCT10.v362 that, similar to the previously described AP33 and HCV1, bind to a highly conserved linear epitope on E2. We utilize a combination of in vitro resistance selections using the cell culture infectious HCV and structural analyses to identify mechanisms of HCV resistance to hu5B3.v3 and MRCT10.v362. Ultra deep sequencing from in vitro HCV resistance selection studies identified resistance mutations at asparagine N417 (N417S, N417T and N417G) as early as 5 days post treatment. Comparison of the glycosylation status of soluble versions of the E2 glycoprotein containing the respective resistance mutations revealed a glycosylation shift from N417 to N415 in the N417S and N417T E2 proteins. The N417G E2 variant was glycosylated neither at residue 415 nor at residue 417 and remained sensitive to MRCT10.v362. Structural analyses of the E2 epitope bound to hu5B3.v3 Fab and MRCT10.v362 Fab using X-ray crystallography confirmed that residue N415 is buried within the antibody–peptide interface. Thus, in addition to previously described mutations at N415 that abrogate the β-hairpin structure of this E2 linear epitope, we identify a second escape mechanism, termed glycan shifting, that decreases the efficacy of broadly neutralizing HCV antibodies
    corecore